A fast-computational spiking neuron model adaptable to any cortical neuron
نویسندگان
چکیده
منابع مشابه
A spiking neuron model of cortical broadcast and competition.
This paper presents a computer model of cortical broadcast and competition based on spiking neurons and inspired by the hypothesis of a global neuronal workspace underlying conscious information processing in the human brain. In the model, the hypothesised workspace is realised by a collection of recurrently interconnected regions capable of sustaining and disseminating a reverberating spatial ...
متن کاملGlutamate gated spiking Neuron Model
BACKGROUND Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. PURPOSE The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. ...
متن کاملA functional spiking neuron hardware oriented model
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly in field programmable gate arrays (FP...
متن کاملInvestigation of a chaotic spiking neuron model
Chaos provides many interesting properties that can be used to achieve computational tasks. Such properties are sensitivity to initial conditions, space filling, control and synchronization. Chaotic neural models have been devised to exploit such properties. In this paper, a chaotic spiking neuron model is investigated experimentally. This investigation is performed to understand the dynamic be...
متن کاملA spiking neuron model: applications and learning
This paper presents a biologically inspired, hardware-realisable spiking neuron model, which we call the Temporal Noisy-Leaky Integrator (TNLI). The dynamic applications of the model as well as its applications in Computational Neuroscience are demonstrated and a learning algorithm based on postsynaptic delays is proposed. The TNLI incorporates temporal dynamics at the neuron level by modelling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2009
ISSN: 1471-2202
DOI: 10.1186/1471-2202-10-s1-p22